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Previous results of quasiclassical spin dynamics are extended by presenting a new approxi-
mation for quantum corrections to the classical equation of motion for the Heisenberg model.
The accuracy of the equation with these corrections is determined by comparing computer cal-
culations based on this formalism with exact quantum and classical results for spin pair cor-
relation functions for a six-spin linear chain at infinite temperatures.

I. INTRODUCTION

The dynamical behavior of the Heisenberg spin
system, described by the Hamiltonian
H—T—Z)J“'gi'é.il, (1)
i# 4
has received a great deal of attention. Dynamical
quantities of interest are, for example, spin pair
correlation functions of the form

-BH
e R (2

(S1a(0) Sya()) =

The spin pair correlation functions defined in Eq.
(2) are directly related to the neutron scattering
cross section.! Another quantity of interest which
is proportional to the neutron cross section is the
Fourier transform of the spin pair correlation
function:

aB (= 1 i ike (F
8% (%, w)= 5 f dte 25 e T (S, (0)S,(1) )

i1
(3)
In recent years, the technique of computer simu-
lation has been applied to the classical Heisenberg
model, and several interesting results have been
obtained.?7® 1t is well known that the classical
approximation is valid in the large spin limit. "’

However, for finite spin j, the validity of the clas-
sical approximation is not understood very well.

In a previous paper® (which will be referred to
as I), we have employed the Wigner formalism® °
to obtain quantum corrections to the classical
spin dynamics. These quantum corrections derived
in I can be divided into two types. The first re-
sults from approximating the thermal average as
an integration over a classical distribution of the
form e™#e1, The second is a quantum correction
to the classical equation of motion.

These two corrections will be discussed sepa-
rately in Secs. II and III. In Sec. IV, we present
computer calculations to test the accuracy of the
quasiclassical equation of motion.

II. THERMAL AVERAGE

In this section, for simplicity, we will consider
only the spin-3 nearest-neighbor exchange model.
In I, we obtained spin pair correlation functions in
terms of a series in classical spin pair correlation
functions. The result to second-order classical
correlations is

2(S1a(0)S;5(¢) +S;5(£)S14(0) ) = (R p(t) ) oy
-3(28- BZJ)§ Jiv (R o Dg(t) )1

=382 20 Jypdp e {Qprra Q)+ -
ry "u (4)
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In Eq. (4), classical pair correlation functions are
defined as

e dQ, oBH
(Qua Y1 =j(j+1) [d8 lfdad ” ed_ﬁ Wes-zai:wﬂm(t)

(5)
where
Hy=-j x—Ji,Jn'§ Gy (6)
i#
and &, is a unit vector.

In the classical approximation, the right-hand
side of Eq. (4) is simply replaced by (2;, 2;5() )e1-
The quantum correction terms in Eq. (4) have a
rather complicated appearance. However, the
physical implications of these terms can be more
clearly seen if we examine the contribution of these
terms to $**(k, w) in Eq. (3).

We note that $*(k, w) is related to the Fourier
transform of spin pair correlation functions by the
relationship

2coth(3pkw) if dt et

s* K W= T g,

X 25 e Tt L(S, (0)S,5(2) + S;5(8)S14(0)) .

i

(7
Now substituting the Fourier transform of Eq. (4)
into Eq. (7), we obtain

Zcoth(zﬁh'w)

$*8(k, w) = 1 - $3b(k, w)

X[1-3pJ8 (K) - 38202 E,(K)++ -+ ],
(8)

where

82 (k, w)= 2];Tf dte it ) ¢* ¢ '?‘)<9|a Qs))er

i,1

(9)
51(1?): (Zi;) ei?- (?,.-?{) , (10)
EK)= L et g (K). (11)

W,

In Eqs. (10) and (11), the summation on i’ is re-
stricted to the nearest neighbors of { and the sum-
mation oni' is restricted to the nearest neighbors
of i’ such that ;'’ #

1t is clear from Eq. (8) that the essential dynam-
ical features of $*%(k, w) which can be seen in its
w dependence are determined by $*(k, w). The
corrections appear as a multiplicative factor which
depends only upon k. One is tempted then to con-
clude that, apart from the detailed balance factor
coth(3pw)/(1 —e=®), the w dependence of
§*®(x, w) is determined by the classical equations
of motion.

However, the equation satisfied by $,(¢) is not the
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usual classical equation of motion. One must add
correction terms to the classical equation for
§,(#), as we shall see in Sec. III.

III. QUASICLASSICAL EQUATION OF MOTION

The corrections to the classical equation of mo-
tion for arbitrary spin j were obtained in I as a
power series in {;

d 3, t>_272 T B OXBe (47,0, (12)
where

7:(8) *'_12—2 Jie [&

x[1 -

(@) =8 ()]

08,0 +00® . (13)

Retaining only the first term in the right-hand
side of Eq. (13) should be sufficient for short
times, say jJt/F<1. However, for large ¢, the
short-time approximation for ¥,(¢) does not apply.
In fact the linear ¢ dependence of our approximation
to 7;(¢) causes our approximation to diverge at large
t. To avoid this spurious effect of the linear time
dependence of our approximation to the quantum
correction terms for the long-time behavior, we
now make a different approximation for ¥;(¢).

To estimate 7,;(¢), we can evaluate (d/dt) y,(¢) at
t=0 and then replace the =0 argument by /. Then,
neglecting higher order terms, we obtain

dis‘z,( )= 7 8, (1) x By (1)

1 (o ' '
—EJ—_’D. ar ?)[51(7)—§1'(7 )]

X[1=8,(1") & (r], (14)
where the scaled time 7 is defined as
T=2jJdt/f . (15)

The quantum correction term in Eq. (14) is of
the order of 1/j, which vanishes in the large j
limit and hence correctly reproduces the classical
equation of motion. Of course, higher-order cor-
rections can be written in terms of multiple inte-
grals of the form

fOT dry fo" dr, ---f

Yar, f(@y(r,) - Sy(7)

(16)

We should hasten to note that the principal rea-
son for introducing the more complicated correc-
tions in Eq. (14) is that it does not suffer from
spurious divergence problems at large /. Clearly
we have no reason to expect that this correction
will accurately predict ﬁ,(‘r) for values of 7 greater
than unity. We still only have an approximation
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FIG. 1. Comparison of exact quantum correlation func-
tions with classical and quasiclassical approximations for
a spin-3 Heisenberg linear chain with six spins at infinite
temperatures. T,=(S;- S,0)/ (S, Sp.

that is accurate for small 7.
vergent at large 7.

It is simply not di-

IV. COMPUTER CALCULATION

Eqgs. (8) and (14) establish an explicit relation-
ship between quantum and classical spin dynamics.
This relationship provides us with a technique to
perform quantum calculations in terms of “clas-
sical” variables. This classical procedure has the
advantage that using it one can easily perform
numerical calculations with the aid of a computer.
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Let us now consider a spin-3 linear chain con-
taining six spins. We employ Eq. (14) to compute
spin pair correlation functions for this system at
infinite temperatures. The reason for the choice
of a small system is that exact quantum calcula-
tions are easily accessible for the comparison
with our approximation. Hence the results ob-
tained in this section are mainly aimed at de-
termining the accuracy of the quasiclassical equa-
tion of motion in Eq. (14).

In Fig. 1, we compare quantum correlation
functions with quasiclassical and classical re-
sults. The procedure of the computation for quasi-
classical and classical results is essentially the
same as that employed by Windsor. 2 Here the re-
sults were averaged over 100 randomly chosen sets
of initial §’s. Of course we used the same initial
sets for both classical and quasiclassical cases.

From Fig. 1 we can see that the short-time be-
havior is much better described by the quasiclas-
sical approximation than the classical approxima-
tion, and so is the over-all structure of correlation
functions. For a particular set of initial §’s the
classical equation of motion gives a very smooth
time dependence for £;(¢), which can be charac-
terized by a precessional period T of a spin in the
effective field of neighboring spins,

T=2nk/z2J , L))

where z =2 is the number of nearest neighbors.

This smooth motion for §,(¢) clearly cannot yield
the detailed structure occuring in the quantum cor-
relation functions as shown in Fig. 1. This struc-
ture in the correlation functions has much shorter
“periods” than the precessional period given in Eq.
(17). Of course we expect this detailed structure
to be less evident for a large system. However,
this feature should result from the averaging pro-
cess due to the interactions among many particles
in the system, and not from the smooth motion of
each of the {’s. Quite simply the classical equa-
tion for §, (#) gives much too smooth a time depen-
dence.

To estimate the accuracy of the quasiclassical
equation of motion, we have chosen a case where
the quantum corrections would be dominant, namely,
the spin-3 case and a small number of spins. Ex-
amining the figures we can see that the quasiclas-
sical results are not too bad for short times and
the first few moments. We should note here the
failure of the classical and quasiclassical
I'’s for n>0 to go to zero at t=0. This is due to
the fact that our 100 initial sets of &’s are not large
enough to fulfill this condition.
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de Haas—van Alphen measurements have been made on Cr-rich alloys with up to 2-at.% Vv
and 1-at.% Mn. In the crystals in which the antiferromagnetic wave vector q is incommensu-
rate with a reciprocal-lattice vector, the changes in three of the frequencies associated with
hole ellipsoids at N are consistent with changes in q, rather than with a geometrical change
in the size of the hole ellipsoids upon alloying. In the crystal in which q is commensurate
with a reciprocal-lattice vector, several frequency branches were observed. The angular
dependence of these branches is consistent with simple ellipsoid models of the Fermi surface.

I. INTRODUCTION

In recent years the antiferromagnetism of Cr has
been extensively studied and the experimental re-

sults are in agreement with an itinerant electron mod-

el of antiferromagnetism. In this model the elec-
tron gas acts collectively to produce a spatially
varying spin density with wave vector q which in
general is not commensurate with a reciprocal-lat-
tice vector.

The effects on the physical properties of Cr due
to alloying V, Mn, and other metals with Cr have
also been studied. The effect on the Néel tempera-
ture Ty, for example, due to alloying V, Mn, and
Mo with Cr is shown in Fig. 1. It is seen that V
decreases the Néel temperature while Mn increases
Ty.'™! These two metals have a similar effect on
the magnitude of q.® The changes in Ty and g have
been interpreted as arising from a modification of

the Fermi surface (FS) of Cr due to alloying.! Since,

as shown in Fig. 1, as little as 4-at.% V in Cr low-

ers Ty below 4K, one may be able to observe the

modified FS of Cr in the paramagnetic state.
Lomer!®"® first proposed a model of the FS of

Cr and suggested that the anitferromagnetic state

was stablized by flat portions of the FS. Loucks'

calculated the FS of Cr using an augmented-plane-

wave method, and his result for the (100) plane is
shown in Fig. 2. Loucks did not find hole ellipsoids
at N (shown by dashes in Fig. 2), although experi-
mental evidence!® indicates they are present. The
flat portions of the hole octahedron and body of the
electron jack are separated by ¢ = (27/a) (1 -5),
6~0.05.

One method used to determine the FS of a metal
is the de Haas—van Alphen (dHvA) effect. dHVA
measurements have been made on pure Cr in a sin-
gle-q state.'® Experiments have shown that usually
there are three spin-density wave vectors present
in a Cr crystal. However, if the crystal is cooled
through Ty in the presence of a large magnetic field
(field cooling) the crystal will contain only one g. !¢
The resulting dHvA spectrum obtained from a crys-
tal with single q is quite complex, and not all of the
observed branches in the spectrum have been in-
terpreted. dHvVA measurements in Cr-alloy crys-
tals'” will provide more insight into the FS and
antiferromagnetic state of Cr. In the present pa-
per, we report the first detailed FS measurements
on a series of antiferromagnetic Cr-V and Cr-Mn
alloys.

II. EXPERIMENT
The dHVA samples were prepared from single- or



